

Hydrogen Separation from Gas Mixtures by Selective Adsorption

A/Prof Gang Kevin Li

1. Background

2. Our innovations

- 1) Hydrogen capture using zeolite 3A for pipeline gas deblending
- 2) Recovery of low-concentration hydrogen using alloy LaNi₅ based pressure swing adsorption
- 3) High purity helium and hydrogen production from natural hydrogen mines

3. Conclusion and outlook

Strength of hydrogen energy:

- ✓ Great flexibility storage and handling capacities.
- \checkmark Stored in large quantities for extended periods of time.
- ✓ Obtained from different sources and different processes.

Application of hydrogen energy:

- \checkmark As transport fuel for light vehicles and heavy vehicles.
- \checkmark Stationary applications, for instance energy autonomy for buildings.
- \checkmark Integration in centralized energy networks.

Hydrogen is proposed as an attractive substance that could be used to store and transport energy.

. Ibeh, B., Gardner, C., & Ternan, M. (2007). Separation of hydrogen from a hydrogen/methane mixture using a PEM fuel cell. International journal of hydrogen energy, 32(7), 908-914.

Hydrogen could be transported to various costumers via

- Gaseous hydrogen
 - **Gaseous compression**
 - **D** Pipelines
 - Tube trailers
- Liquid hydrogen
- Novel hydrogen carriers
- Dispensing hydrogen fuel to vehicles
- Solid state storage

- Pipelines are the most efficient for handling large flows, but capital intensive (\$0.5-\$1.5 million/mile).
- The most cost efficient way is using the existing natural gas grid infrastructure.

Hydrogen Park South Australia (HyP SA) THE UNIVERSITY OF

- The project facilities became operational on 19 May 2021.
- The renewable hydrogen is blended with natural gas at volumes of up to 10%, and supplied to nearby homes via the existing gas network.
- HyP SA is Australia's largest electrolyser and the first to deliver a renewable hydrogen blend to customers on the existing gas network.

Australian Gas Infrastructure Group. (2022). Australia's first renewable gas blend supplied to existing customers. https://www.agig.com.au/hydrogen-park-south-australia

Fast facts

Electrolyser

Production

Storage

Electricity

Water

Markets

May 2021

Up to 20kg per hour

Renewable electricity via grid*

15L of ultrapure water for 1kg of

Up to 10% (volume) renewable gas blend to more than 3700 connections, businesses

and schools and 100% to industry via tube

40kg onsite

hydrogen**

trailers

(PEM)

1.25MW Proton Exchange Membrane

Online

Project name	Project period	Location	H ₂ % blending
HyNTS future grid	2019- present	UK	2
ITM Power Thüga Frankfurt plant	2014- present	Germany	2
The P2G-unit of the Bavarian city of Haßfurt	2016- present	Germany	5
Hydrogen Park South Australia	2019- present	Australia	5
GRTgaz Jupiter 1000 project	2017- present	France	0-6
HyDeploy	2019- present	UK	20
The GRHYD demonstration project	2014- present	France	0-20

ITM Power Thüga Frankfurt plant in Germany

GRTgaz Jupiter 1000 project in France

The GRHYD demonstrator makes it possible to valorize the ENR (green electricity not finding an outlet on the electricity network) in the form of hydrogen gas distributed in the natural gas network, by implementing the Power-to-Gas concept.

- Minor component H_2 is the favored component to be captured.
- The hydrogen molecule is one of the smallest size molecule that exists.
- Traditional adsorbents (such as activated carbon, zeolite 5A and silica)

Traditional adsorbent adsorbs CH_4 preferentially.

Adsorption and desorption process configuration using H₂ selective material - zeolite 3A (a) and CH₄ selective material - activated carbon (b).

1 - Hydrogen capture using zeolite 3A for pipeline gas deblending

Properties:

- The chemical formula is $K_{12}[(AlO_2)_{12}(SiO_2)] \cdot XH_2O$. ۲
- Zeolite 3A has the molecular-sieving windows of nominal diameter 0.3 nm • (3Å) in its crystal lattice framework, which obstruct the adsorption of molecules of diameter larger than 0.3 nm.

Applications:

- Hydrogen-deuterium isotope separation at low temperature (below 100 K). ٠
- Dewatering (such as ethanol Dehydration to obtain higher quality alcohol) •

Molecular Sieve 3A: Pore diameter 3Å

Gas molecule	Kinetic diameter (Å)
H ₂ O	2.65
H_2	2.89
CO ₂	3.3
O ₂	3.46
N_2	3.64
CH_4	3.8

^{1.} Salazar, J. M., Lectez, S., Gauvin, C., Macaud, M., Bellat, J. P., Weber, G., ... & Simon, J. M. (2017). Adsorption of hydrogen isotopes in the zeolite NaX: Experiments and simulations. International Journal of Hydrogen Energy, 42(18), 13099-13110. 2. Kotoh, K., Takashima, S., & Nakamura, Y. (2009). Molecular-sieving effect of zeolite 3A on adsorption of H2, HD and D2. Fusion engineering and design, 84(7-11), 1108-1112.

Pressure: 10 bar	Zeolite 3A (25°C, 40°C and 60°C)	Zeolite 4A (25°C)
CH ₄ adsorption	No adsorption	2.534 mmol/g

The adsorption amount of both CH_4 and N_2 on zeolite ٠ 3A was too small for reliable measurement using ASAP 2050.

Adsorption and desorption isotherms of H₂ on zeolite 3A at 298 K. 11

a good

- SEM and TEM images both revealed the cubic morphology of the zeolite 3A.
- XRD pattern confirmed the cubic crystal structure $K_{12}Al_{12}Si_{12}O_{48}$ with space group Pm3m.

Characterization of adsorption materials zeolite 3A. optical image of zeolite beads (a), SEM micrographs of the zeolite cubes (b), TEM image confirming cube morphology of the zeolite (c), XRD pattern (d), HRTEM image of the zeolite 3A showing lattice fringes (e), TEM Selected Area Electron Diffraction (SAED) micrograph of zeolite featuring indexed reflections (f) and aperture of zeolite 3A and hydrogen selectivity configuration (g).

Hydrogen adsorption on zeolite 3A

Molecular trapdoor effect:

- The accessibility of adsorption sites is temperature dependent.
- H_2 gas can be adsorbed above a certain temperature.

Adsorption isotherms of H_2 on zeolite 3A at different temperatures over the pressure range 0 to 1000 kPa, lines = Dual-site Langmuir model and symbols = experimental data.

Dual-site Langmuir model:

$$q_{i}^{*} = m_{i} \frac{b_{i}P_{i}}{1 + \sum_{j=1}^{N} b_{j}P_{j}} + n_{i} \frac{d_{i}P_{i}}{1 + \sum_{j=1}^{N} d_{j}P_{j}}$$
$$b_{i} = b_{i0} \exp\left(\frac{Q_{1,i}}{RT}\right) \quad d_{i} = d_{i0} \exp\left(\frac{Q_{2,i}}{RT}\right)$$

2. Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., ... & Webley, P. A. (2012). Discriminative separation of gases by a "molecular trapdoor" mechanism in chabazite zeolites. Journal of the American Chemical Society, 134(46), 19246-19253.

^{1.} Li, G. K., Shang, J., Gu, Q., Awati, R. V., Jensen, N., Grant, A., ... & May, E. F. (2017). Temperature-regulated guest admission and release in microporous materials. Nature communications, 8(1), 1-9.

Separation target and conditions

• Most of the currently installed gas turbines were specified for a H_2 fraction in natural gas of 1 vol% or even lower.

		[%]→	2	5	10	20	25	30	40	50	60	70	80	90	100
TS	Pipeline (steel, > 16 bar)	10%													
TS	Compressors	5%													
ST	Storage (cavern)	100%													
ST	Storage (porous)														
ST	Dryer	5%													
TS/DS	Valves	10%													
TS/DS	Process gas chromatographs														
TS/DS	Volume converters	10%													
TS/DS	Volume measurement	10%													
DS	Pipeline (plastics, < 16 bar)	100%													
DS	Pipeline (steel, < 16 bar)	25%													
DS	House installation	30%													
U	Gas engines	10%													
U	Gas cooker	10%													
	Atmeepheriegas burner	10%					_		-						
U	Condensing boiler	10%													
U	CNG-vehicles	2%													
U	Gas turbines	1%													
U	Feedstock														

Limitations for H_2 blending rates of selected components of gas utilization options. Note: without adjustments (dark green), modifications may be needed (light green)

• Methane product purity > 99%

• New South Wales (Australia) pipeline network configuration

- Inlet pressures to be investigated: 10 bar, 30 bar, 50 bar
- . Bard, J., Gerhardt, N., Selzam, P., Beil, M., Wiemer, M., & Buddensiek, M. (2022). The Limitations of Hydrogen Blending in the European Gas Grid.
- 2. Altfeld, K., & Pinchbeck, D. (2013). Admissible hydrogen concentrations in natural gas systems. Gas Energy, 2103(03), 1-2
- 3. Smith, N., Byrne, N., Coates, M., Linton, V., & van Alphen, K. (2017). Research Report Identifying the commercial, technical and regulatory issues for injecting renewable gas in Australian distribution gas networks
- 4. Detailed Design for Hydrogen Generation (Western Sydney Green Gas Project), GPA Engineering, Australia, 2020

Separation performance_10 bar VPSA

	• Sten configur	vation: 5-bed V	PSA process 10 st	tens each cycle	Simulation cond	itions			
	Step configur		1 577 process, 10 s	Light product	Conditio	n	Value	e	Unit
	PE1	PE2 PE3			Feed press	ure	10		bar
					Feed gas H_2 concentration 3, 4, 5, 10	0, 15	%		
	1 2 3	4 5	6 7 8	9 10	Desorption pressure Flow rate		0.2		bar
Inlet							100		sm³/h
pressure					Operating temp	perature	298		Κ
10 bar	Feed Feed PE-pressure equalizations	He (va	eavy product cuum applied)		Bed poros	sity	0.37	1	/
-	Physical size (m) cor	Feed H ₂ ncentration (%)	H_2 downstream concentration (%)	CH_4 topstream concentration (%)	H ₂ recovery rate (%)	CH ₄ recover (%)	ry rate	Ener consum (kJ/kg	rgy nption CH ₄)
		3	7.76	99.01	76.75	71.78		70.0	53
		4	9.27	99.03	84.53	65.54		87.0	08
	0.5 x 1.8	0.5 x 1.8 5 11.10 10 17.66		99.04	88.42	62.74		128.	91
				98.98	95.33	50.62		222.	08
		15	22.59	99.10	97.91	40.80		377.	62

Separation performance of 10 bar VPSA for various vacuum levels

Desorption pressure (kPa)	Feed H ₂ concentration (%)	Cycle time (s)	H ₂ downstream concentration (%)	CH ₄ topstream concentration (%)	H ₂ recovery rate (%)	CH ₄ recovery rate (%)	Energy consumption (kJ/kg CH ₄)
	3	560	8.20	99.00	76.06	73.67	97.50
	4	470	9.82	99.00	83.51	68.03	126.25
10	5	410	11.50	99.02	87.96	64.38	167.50
	10	275	17.89	99.03	95.46	51.31	333.13
	15	250	23.33	99.05	97.66	43.36	541.25
	3	550	7.76	99.01	76.75	71.78	70.63
	4	435	9.27	99.03	84.53	65.54	86.88
20	5	395	11.10	99.04	88.42	62.74	128.75
	10	270	17.32	99.07	95.88	49.15	250.00
	15	240	22.64	99.00	97.67	41.10	340.63
	3	480	7.44	99.03	77.73	70.07	52.50
	4	410	9.07	99.05	85.23	64.40	75.63
30	5	365	10.58	99.06	89.11	60.35	96.25
	10	250	16.60	99.07	96.11	46.35	171.88
	15	240	22.51	99.01	97.58	40.74	275.63

 CH_4 product recovery (a) and energy consumption (b) of various vacuum levels in 10 bar VPSA processes.

- Both purities and recoveries of products benefit from the deeper vacuum, but more energy is required.
- There is a tradeoff between separation performance and energy consumption.

Separation performance_30 bar PSA

• Inlet pressure = 30 bar, desorption pressure = 1 bar – No energy required for vacuum

Physical size (m)	Feed H ₂ concentration (%)	H ₂ downstream concentration (%)	CH ₄ topstream concentration (%)	H ₂ recovery rate (%)	CH ₄ recovery rate (%)	Energy consumption (kJ/kg CH ₄)
	3	6.59	99.01	78.90	65.44	0
	4	7.96	99.05	86.52	58.33	0
0.3 x 1.8	5	9.17	98.98	89.61	53.27	0
	10	15.27	98.95	96.13	40.74	0
	15	19.79	99.08	73.85	31.43	0

Example pressure profile (a) and temperature profile (b) of 30 bar PSA process over one cycle at cyclic steady state condition (Feed H₂ concentration = 5%). 17

Separation performance_50 bar PSA

Parameters in the Langmuir model for H₂ and CH₄ adsorption on activated carbon

Component	m _i (mol/kg)	n _i (mol/kg)	b ₀ (1/kPa)	d ₀ (1/kPa)	Q _{1i} (J/mol)	Q _{2i} (J/mol)
CH ₄	8.49E-02	2.97	7.26E-05	2.64E-07	17.66	24.01
H_2	4.90	-	1.24E-06	-	10.10	-

• Feed hydrogen concentration = 5%: 5-bed H₂ PSA cycle with 4 pressure equalizations (PEs) steps

• Feed hydrogen concentration = 10 & 15%: 5-bed H₂ PSA cycle with CH₄ product purge step

THE UNIVERSITY OF Zeolite 3A vs activated carbon

- Feed gas: $100 \text{ m}^3/\text{h} = 1.24 \text{ mol/s}$
- Feed gas pressure: 30 bar
- Design: 5 bed PSA
- Physical size: 0.3 x 1.8 m

Adsorbent	Feed H ₂ concentration (%)	CH_4 topstream concentration (%)		
	5	98.98		
Zeolite 3A	10	98.95		
	15	99.08		
Adsorbent	Feed H ₂ concentration (%)	CH_4 downstream concentration (%)		
	5	99.14		
Activated carbon	10	98.98		
		98.94		

Pressure profiles of 5% (a) and 15% (b) feed hydrogen concentration activated carbon PSA systems as a function of cycle time. (Adsorption pressure = 30 bar.)

Comparison between activated carbon and zeolite 3A in terms of recovery, productivity (a) and power 21 consumption (b). (Adsorption pressure = 30 bar.)

- Zeolite 3A is one of only a few adsorbents that can selectively adsorb H_2 and can be used for H_2 capture from blended pipeline gas using PSA processes at room temperature.
- The designed PSA system shows promising technical feasibility to produce a high purity CH₄ product (>99%) using zeolite 3A adsorbent.
- Zeolite 3A has advantages over activated carbon for the same separation configuration in terms of recovery, productivity and energy consumption especially when the feed H_2 concentration is low ($\leq 10\%$).

Yang, J., Dehdari, L., Guo, Y., Guo, J., Singh, R., Xiao, P., ... & Li, G. K. (2023). Hydrogen capture using zeolite 3A for pipeline gas deblending. *Chemical Engineering Journal*, 466, 143224.

2 - Recovery of low-concentration hydrogen using alloy LaNi₅ based pressure swing adsorption

Hydrogen/methane separation using metal alloy hydride PSA

Mechanism of hydrogen adsorption on LaNi₅

• Metal alloys are candidate materials for hydrogen storage. Hydrogen adsorption/desorption reactions can be written according to following equation, including the heat of reaction:

 $M + (x/2)H_2 \leftrightarrow MH_x + \Delta H_{adsorption}$

Mechanism of hydrogen adsorption on LaNi₅

- 1) External diffusion and physisorption H_2 from surrounding diffuses to the external surface of MHy (β phase);
- 2) Dissociative chemisorption H_2 dissociate and chemisorb on the surface of MH;
- Internal diffusion H atoms penetrate the ash layer and reached the external surface of MHx (α phase);
- Chemical reaction H atoms react on the surface MHx (α phase) and generate a new ash layer MHy (β phase).

Adsorption isotherms of H_2 on LaNi₅ at different temperatures. Lines – Rutherford Extended CMMS model and symbols – experimental data

- LaNi₅ can work at moderate temperatures and pressures.
- The capacity of LaNi₅ alloy is high (up to 6.8 mol/kg).
- As the temperature increases, the plateau pressure also increases because an increase in temperature favors the endothermic desorption of hydrogen.

• Rutherford Extended CMMS model $q_{H_2}^* = \frac{C_{sat}k_{0T}\exp(\frac{q_0}{RT})P}{k_{0T}\exp(\frac{q_0}{RT})P + w^2} + \frac{C_{satL}b_{LT}\exp(\frac{q_L}{RT})P}{1 + b_{LT}\exp(\frac{q_L}{RT})P}$

$$v = \frac{1}{2} (1 - k_{1T} \exp[\frac{q_1}{RT}] P + \sqrt{(1 - k_{1T} \exp[\frac{q_1}{RT}] P)^2 + 4k_{0T} \exp[\frac{q_0}{RT}] P})$$

• Parameters in the CMMS equation

Parameters	Value	Unit
C _{sat}	6.09	mol/kg
K _{0t}	6.60E-20	1/kPa
Q_0	82884	J/mol
C_{satL}	0.63	mol/kg
B_{Lt}	7.87E-07	1/kPa
Q_L	26654	J/mol
K _{1t}	1.86E-08	kPa
Q_1	29791	J/mol

Experimental data (symbols) and JMA model simulation curves (lines) at 30 bar and three different temperatures.

- Reaction kinetics were measured at different temperatures at 30 bar.
- The hydriding reaction rates increase with operating temperatures.

• The hydriding kinetics are analyzed using the JMA model.

$$f(t) = \frac{q_{H_2}}{q_{H_2}^*} = 1 - \exp[(-kt^n)]$$

$$k = A \times \exp\left[\frac{E_a}{RT}\right]$$

• Parameters in the JMA model for H₂ adsorption on LaNi₅

Parameters	Value	Unit
Activation energy (Ea)	24.803	kJ/mol H ₂
Preexponential factor (A)	785.38	s ⁻¹
Order of reaction (n)	1	/

LaNi₅ alloy characterization. Pre-adsorption micro-powder precursor, a) SEM micrograph, b) optical image, and c) created packing and post-adsorption naturally formed nanopowder, d) SEM and e) optical microscopy images, and f) corresponding formed pellet, g, h) revealing the size distribution and schematic representation of the initial powder precursor and h, i) elucidating size-morphology transition to nano-sized powder. j) and k) HRTEM images of precursor and post-adsorption powder. l) schematic presentation of LaNi₅ the crystal structure with projection of. m) Powder XRD pattern of samples before adsorption and after desorption, n) TEM-based Electron energy loss micrograph of a sample after desorption is generated from the low-loss region. Below is the low-loss energy region spectrum, integrated over the shown area of the micrograph with negligible distinction from the sample before adsorption. o) elucidates the sample's corresponding TEM-EDX mapping with colour maps of La and Ni elemental distribution.

 \Box Both N₂ and CH₄ are not adsorbed by LaNi₅, so for safety reasons, N₂ was used instead of CH₄ in the experiment.

VPSA column and LaNi₅ characteristics used in the simulation

Parameter				Value		Unit			f
Inlet pressure				30		bar	bar		
Vacuum press	sure			0.35		bar	bar		
Column heigh	nt			1		m			
Column diam	eter			0.02		m			Ļ
Inter-particle	voidage			0.33		m ³ void	/m ³ bed		L
Intra-particle	Intra-particle voidage			0.248		m ³ void/m ³ bead			
Particle radiu	S			2		mm			
Bulk solid de	nsity of a	adsorbent		3354.9		kg/m ³			
Temperature				313		K			
Flowrate				6, 8, 10,	12	st.L/mii	ı		1
Step	1	2	3	4	5	6	7	8	9
1	AD	PE1	PE2	PE3	PE4	Vent	VAC	RPE4	Idle
2	Idle	RPE1	RP	AD	PE1	PE2	PE3	PE4	Vent
3	RPE3	Idle	RPE2	Idle	RPE1	RP	AD	PE1	PE2
4	VAC	RPE4	Idle	RPE3	Idle	RPE2	Idle	RPE1	RP
5	PE3	PE4	Vent	VAC	RPE4	Idle	RPE3	Idle	RPE2

PE3

AD

Idle

PE4

PE1

RPE1

Vent

PE2

RP

VAC

PE3

AD

RPE4

PE4

PE1

Idle

Vent

PE2

29

Flowrate determination (feed hydrogen concentration = 10%)

Outlet gas	Concentration (%)	Recovery (%)	Adsorption time Flowrate /cycle time (s) (st.L/min) Energy consumption (kJ/kmol CH ₄)																							
Topstream CH ₄	99.08	96.49	460+15+15			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15						
Downstream H ₂	98.27	88.76	2450	4	124.56	AD	PE1	PE2	PE3	PE4	Vent	VAC	RPE4	Idle	RPE3	Idle	RPE2	Idle	RPE1	RP						
Recycling gas $(H_2)^*$	11.20	3.16							Ļ	L L								/								
Topstream CH ₄	99.07	96.69	340+15+15										· · · · ·					Ì.		N/		1/	1 s	1	l's se	1
Downstream H ₂	98.70	88.46	1850	6	123.39			```\ T					``),;;;; 11								
Recycling gas $(H_2)^*$	12.72	3.30						30		٦ï								1								
Topstream CH ₄	99.10	95.78	240+15+15				~	25 -		1																
Downstream H ₂	98.35	88.38	1350	8	125.19		e (bar	20 -		L						-										
Recycling gas (H ₂)*	10.30	3.69					ssure	10				-														
Topstream CH ₄	99.04	95.95	170+15+15				Pre	5				Į.						ii –								
Downstream H ₂	98.23	87.37	1000	10	123.32							L						ii								
Recycling gas $(H_2)^*$	12.43	4.19						0	2	200	400	60 T)) Time (s	800 s)	100	0	1200									
Topstream CH ₄	99.04	93.09	100+15+15				Press	sure n	rofile	of V	PSA	proce	ess in	one	cvcle	for	feed l	nvdro	gen							
Downstream H ₂	96.91	85.50	650	12	126.15		conc	entrat	ion o	f 10 %	6 and	flow	rate	of 8	st.L/n	nin.		<i>j</i> 0	6							
Recycling gas $(H_2)^*$	10.71	6.32																								

*Recycling gas contains mixed gases, and in the table, the purity and recovery are recorded for H₂ content within the stream

Separation performance (flowrate = 8 st.L/min)

Inlet gas		Outlet gas	Purity (%)	Recovery (%)	Cycle time (s)	Energy consumption (kJ/kmol CH ₄)
CH_4	95%	Topstream CH ₄	99.02	97.88		
H_2	5%	Downstream H_2	96.94	77.06	2125	51.20
		Recycling gas $(H_2)^*$	10.90	4.44		
CH ₄	90%	Topstream CH ₄	99.10	95.78		
H_2	10%	Downstream H ₂	98.35	88.38	1350	125.19
		Recycling gas $(H_2)^*$	10.30	3.69		
CH_4	85%	Topstream CH ₄	98.98	94.63		
H_2	15%	Downstream H ₂	99.43	88.98	1150	199.78
		Recycling gas $(H_2)^*$	15.44	5.56		
CH ₄	80%	Topstream CH ₄	99.07	90.91		
H_2	20%	Downstream H ₂	99.35	91.22	750	302.94
		Recycling gas $(H_2)^*$	13.43	5.45		

*Recycling gas contains mixed gases, and in the table, the purity and recovery are recorded for H₂ content within the stream

and gas phase (b) against location in column.

31

- LaNi₅ exhibits fast reaction kinetics and high hydrogen adsorption capacity at moderate temperatures and pressures.
- The experiment results demonstrate that hydrogen can be successfully captured and separated by LaNi₅ using an autoclave pressure vessel.
- The designed multiple bed vacuum pressure swing adsorption (VPSA) process has been modeled with the validated Aspen Adsorption simulation tool.
- High purity hydrogen products and methane products (both >99%) can be obtained from the designed VPSA process with high recovery exceeding 90% when the feed hydrogen concentration is 20%.

Yang, J., Zavabeti, A., Guo, Y., Yu, Z., Dehdari, L., Guo, J., ... & Li, G. K. (2024). Recovery of low-concentration hydrogen using alloy LaNi₅ based pressure swing adsorption. *Chemical Engineering Journal*, 493, 152395.

3 – High purity helium and hydrogen production from natural hydrogen mines

- The helium separation and purification is commonly done via cryogenic distillation, which is cost and energy intensive technology.
- For a higher energy efficiency the potential of several emerging technologies based on adsorption and/or membrane separation have been investigated.

Helium Cryogenic Gas Purification Systems from Ability Engineering

Process illustration of helium production from natural gas

Colors to distinguish between different kinds of hydrogen:

- **Gray hydrogen** Made from fossil fuels, which release carbon dioxide and add to global warming.
- Blue hydrogen Same as gray hydrogen, but the carbon is captured and sequestered.
- **Green hydrogen** Made without carbon emissions by using renewable electricity to split water.
- **Orange hydrogen** Stimulated by pumping water into deep source rocks.
- Gold hydrogen Tapped from natural subsurface accumulations.

LaNi₅ with high H_2 adsorption capacity can be used to separate H_2/He mixtures to obtain high purity H_2 and He products.

19 December 2023 ASX Announcement

Ramsav 2 Update

Very High Hydrogen Concentrations up to 86% Purity Found Along with the Very High Helium Concentrations

Key Highlights:

1. Completion of Ramsay 2 Well:

On 1 December, 2023, Ramsay 2 achieved its final Total Depth (TD) of 1068mMD.
Logging operations have been successfully completed, and casing has been securely cemented in place.

2. Very High Hydrogen Concentrations up to 86%

- Post drill analysis of the mudgas samples and the calibrated real time mudgas log data reveal very high air-corrected hydrogen concentrations, reaching up to 86% at shallow levels from 194m through to 536m in the Parara and Kulpara formations.
- These measurements validate the historic results from Ramsay Oil Bore 1 (1931) and confirm the presence of a hydrogen play at shallow depths in the Ramsay Project Area which aligns very closely with the results of Ramsay 1 (October 2023).
- Mud gas data, calibrated with isotube analysis, shows the fractured granitic basement contains significant levels of hydrogen within the open fractures, in line with pre-drill model underpinning the prospective resource assessment.
- Flow testing of completed wells will ultimately confirm hydrogen concentrations, flow rates, and hence the commerciality of the hydrogen play.

Drilling at Ramsay 2 commenced on 17 November 2023, and was completed at a total depth of 1068m with all well activities finalized on 1 December 2023.

- Very High Hydrogen Concentrations up to 86%.
- World-Class Helium Concentrations of 6.8% raw gas.³⁵

Proof of concept – selectivity to hydrogen

- 10 bar helium gas was initially introduced into the pressure vessel and the pressure within the vessel remained unchanged.
- 30 bar hydrogen gas was injected, resulting in a significant pressure drop. This experiment demonstrates that the material LaNi₅ exhibits strong selectivity towards hydrogen, making it suitable for hydrogen capture and separation.

LaNi₅ vacuum adsorption cycles

- The hydrogen adsorption and vacuum desorption cycles were performed at 40 °C in the pressure vessel.
- Different vacuum duration was tested to determine the effective working capacity.

Vacuum duration (min)	Adsorption capacity (mol/kg)
Fresh sample	7.01
3	5.48
5	5.86
10	6.34
>20	6.82

(V)PSA column and LaNi₅ characteristics used in the simulation (Aspen Adsorption software).

Parameter Value Unit Inlet pressure 30 bar Column height 0.5 m Column diameter 0.04 m Inter-particle voidage 0.33 m³ void/m³ bed Intra-particle voidage m³ void/m³ bead 0.248 Particle radius 2 mm Bulk solid density of adsorbent 3354.9 kg/m^3 Feed hydrogen concentration 90 % Temperature 313 Κ Flowrate 30 st.L/min

The energy consumption for the cryogenic separation process is approximately **35 times** that of VPSA separation.

Desorption pressure (bar)	Outlet gas	Concentration (%)	Recovery (%)	Energy cons vacu kJ/kmol He	umption for ium kJ/kmol H ₂	
0.2	Topstream He	99.52	99.82	3 /8E±03	3 90F±02	
0.2	Downstream H ₂	99.97	99.64	5.401105	5.701102	
0.2	Topstream He	99.34	99.68	2 (25, 02	2.025.02	
0.3	Downstream H ₂	99.92	99.63	2.02E+03	2.93E+02	
0.4	Topstream He	99.17	99.52	1.015.02	2.015.02	
0.4	Downstream H ₂	99.96	99.57	1.81E+03	2.01E+02	
1	Topstream He	98.54	98.19	0	0	
1	Downstream H ₂	99.81	99.83	U	0	

(V)PSA separation performance

Effect of feed hydrogen concentration

Inlet gas		Outlet gas	Concentration	Recovery	Adsorption	Faad flowrate	Mass balance (in/out)		Energy consumption for vacuum = 0.2 bar		
con	nposition	Ounci gas	(%)	(%)	time (s)	reed nowrate	Wass Ua.	lance (III/Out)	kJ/kmol He	kJ/kmol H ₂	
He	0.05	Topstream He	99.82	95.78	135		He	100.33	9 10E ± 02	4.08E+02	
H_2	0.95	Downstream H ₂	99.80	99.99	1620		H_2	100.00	8.10E+05		
He	0.1	Topstream He	99.52	99.82	150		He	99.98	2 495 102	2 00E ± 02	
H_2	0.9	Downstream H ₂	99.98	99.64	1800	1.339 mol/min	H_2	100.30	5.461705	3.90E+02	
He	0.25	Topstream He	99.76	97.96	150	= 30.0 st.L/min	He	100.03	1.000 + 02	2 275 - 02	
H_2	0.75	Downstream H ₂	99.33	99.92	1800		H_2	99.99	1.00E+05	3.27E+02	
He	0.5	Topstream He	99.43	98.56	150		He	100	4.07E+02	4.01E+02	
H ₂	0.5	Downstream H ₂	98.58	99.44	1800		H_2	100	4.9/E+02	4.91E+02	

Case 2: Helium production from natural gas

Background-Economics of the Helium Market

- Up to now, the only commercially viable helium source is helium-containing natural gas (NG).
- In the United States, NG with a helium concentration of higher than 0.3% is considered helium-rich and commercially profitable to be recovered, while in Russian, this value is 0.05%.

Table 2. Composition of the analyzed gas blend collected from the studied wells in Amadeus Basin. Isotope gas analyses are reported from McInnes et al. (2017).

Well	Depth	N ₂	Ar	He	H ₂	C02	C ₁	C ₂	C ₂₊	IC ₄ /nC ₄	IC ₅ /nC ₅	DC	R/R _a	СС
name	(m)													
Magee-1	2349	43.61	0.46	6.20	0.03	0.82	39.26	6.10	3.52	0.63	1.11	0.80	-	-
Mt	2144	79.62	-	4.23	5.05	0.33	7.29	2.10	2.85	0.41	8.00	0.71	-	-
Kitty-1														
Mt	2156	61.04	0.57	8.96	11.4	0.09	13.14	3.53	1.24	0.36	6.50	0.73	0.031ª	4.4
Kitty-1														
Mt	2253	99.67	-	0.0	0.0	0.08	0.04	0.02	0.01	0	0	-		
Kitty-1														
Murphy-	1647	-	-	-	-	-	1.18	0.01	0.31	0	0	0.79		
1														
Murphy-	1650	-	-	-	-	-	32.69	2.87	3.90	1.08	0.96	0.83		
1														
Murphy-	1653	-	-	-	-	-	72.61	3.21	0.99	1.10	0.25	0.94		
1														
Murphy-	1656	-	-	-	-	-	27.81	3.14	3.61	1.30	0.82	0.81		
1														
Murphy-	1764	-	-	-	-	-	1.48	0.08	0.16	0	0	0.90		
1														

• Future projection estimates an increase in helium demands of about 6% per year, especially in the semiconductor and medical sectors.

Double stage VPSA design for helium production from NG

Properties of the adsorption column and running conditions applied in the simulations.

Conditions	Value
Length (m)	0.8
Diameter (m)	0.2
Bed porosity (-)	0.37
Adsorption pressure (bar)	10
Desorption pressure (bar)	0.2
Feed flow rate (mol/min)	20
Temperature (K)	298.15

Та	al	bl	e	2

Dual-site Langmuir (DSL) isotherm parameters of different gas components on activated carbon, silica gel and LiLSX zeolite.

	$m \pmod{\mathrm{kg}^{-1}}$	b_0 (bar ⁻¹)	$Q_1 (J \text{ mol}^{-1})$	$n \pmod{\mathrm{kg}^{-1}}$	d_0 (bar ⁻¹)	$Q_2 (J \text{ mol}^{-1})$	Ref.
LiLSX zeolite							
H ₂	1.19	8.91E-05	12,433	0.93	5.15E-05	12,378	This work
N ₂	1.09	1.68E-05	27,586	1.23	1.64E-05	23,628	This work
CH4	2.11	5.05E-05	23,357	3.82	2.17E-05	17,574	This work
CO ₂	3.04	4.99E-04	31,817	2.60	1.79E-09	33,032	This work
C ₂ H ₆ ^b	0.72	3.18E-04	10,821	2.97	1.18E-05	33,293	This work

^a Adsorption equilibrium data of C_5H_{12} is assumed for heavy hydrocarbons (C_{4+}) in simulation study.

^b Adsorption equilibrium data for C_3H_8 and C_{4+} on LiLSX zeolite is assumed to be the same as zeolite5A [35,36,51] in simulations due to experimental limitations and no available data in literature for LiLSX zeolite. This assumption is deemed to be acceptable due to close isotherms of measured gases on both zeolite 5A and LiLSX, and since heavy hydrocarbons are removed prior to reaching the top layer.

Gas composition	N ₂	C ₁	H ₂	Не	C ₂	C ₂ +	CO ₂
Concentration (%)	6E-2	3E-2	50.15	49.76	<1E-5	<1E-5	<1E-5

13.14

11.4

61.04

Concentration (%)

8.96

3.53

1.24

0.09

- LaNi₅ has selectivity towards hydrogen and can be used for hydrogen and helium separation.
- The experiment results demonstrate that hydrogen can be successfully captured at high pressures and released under vacuum conditions by the alloy LaNi₅.
- The designed multiple bed vacuum pressure swing adsorption (VPSA) process has been modeled with Aspen Adsorption simulation tool.
- High purity hydrogen products and helium products (both >98%) can be obtained from the designed VPSA process with high recovery exceeding 95%.

Conclusion

- Hydrogen selective materials were successfully screened and selected.
- These materials were thoroughly characterized, and their mechanisms were carefully investigated.
- The hydrogen separation processes were designed, simulated, and shown to be both effective and energy-efficient.
- This study highlights the feasibility and effectiveness of PSA technologies in high-purity hydrogen gas separation, supporting the integration of the hydrogen economy into the industry.

Outlook

- The library of hydrogen-selective materials can be further studied to deepen our understanding.
- Additionally, the VPSA design can benefit from further configuration optimization.
- Exploring strategies for larger-scale deployment and scaling up the process will be crucial for future applications.

Prof. Paul Webley

Dr. Ali Zavabeti

Dr. Penny Xiao

Dr. Leila Dehdari

A/Prof. Anthony Stickland

Dr. Ranjeet Singh

Dr. Kaifei Chen

Dr. Yalou Guo

Dr. Yuhan Men

Jianing Yang

Jining Guo

Chao Wu

Jia Ming Goh

Zhi Yu

Dingqi Wang

Jianan He

Lei Dong

Xichao Zhang

Yongqiang Wang

Fahimeh Gholampoursaadi

Dr Longbing Qu

Dr Qiuran Yang

Dr Joshua Butson

Dr Qining Fan

Thanks for your attention!

Enabling the decarbonisation of Australia's energy networks

in futurefuelscrc

Future Fuels CRC is supported through the Australian Government's Cooperative Research Centres Program. We gratefully acknowledge the cash and in-kind support from all our research, government and industry participants.

Australian Government Department of Industry, Science and Resources AusIndustry Cooperative Research Centres Program